Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Putrescine enhances intestinal immune function and regulates intestinal bacteria in weaning piglets.

Identifieur interne : 000256 ( Main/Exploration ); précédent : 000255; suivant : 000257

Putrescine enhances intestinal immune function and regulates intestinal bacteria in weaning piglets.

Auteurs : Guangmang Liu [République populaire de Chine] ; Jie Zheng ; Xianjian Wu ; Xiaomei Xu ; Gang Jia ; Hua Zhao ; Xiaoling Chen ; Caimei Wu ; Gang Tian ; Jing Wang

Source :

RBID : pubmed:31241125

Descripteurs français

English descriptors

Abstract

This study aimed to investigate the effect of putrescine on the immune function and intestinal bacteria of weaning piglets. Twenty-four male castrated weaning piglets on their 21st day were randomly assigned into four groups: control (basal diet) and treatment groups given basal diets supplemented with 0.05%, 0.1%, and 0.15% putrescine for 11 days. Results were as follows: (1) Dietary putrescine increased the villus height, width, height/crypt depth and surface area, and decreased the diarrhea index (P < 0.05). (2) Dietary putrescine increased the lysozyme and acid phosphatase activities and the amount of immunoglobulin M, antibacterial peptides, and transforming growth factor β1, but decreased the mRNA levels of tumor necrosis factor α, interleukin-6, interleukin-8 and inducible nitric oxide synthase (P < 0.05). (3) Dietary putrescine increased the mRNA expression of the mammalian target of rapamycin, signal transducer and activator of transcription, and Janus kinase 2 but decreased the mRNA expression of nuclear factor-kappa B P65 (P < 0.05). (4) Dietary putrescine increased the population of total bacteria, Lactobacillus, and Bifidobacterium and decreased that of Escherichia coli in the colon and cecum (P < 0.05). (5) Finally, dietary putrescine increased the concentrations of butyrate and total volatile fatty acids in the colon and those of acetate, propionate, and total volatile fatty acids in the cecum (P < 0.05). Overall, putrescine can enhance intestinal development, improve immune functions, and regulate the population of intestinal bacteria in weaning piglets.

DOI: 10.1039/c9fo00842j
PubMed: 31241125


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Putrescine enhances intestinal immune function and regulates intestinal bacteria in weaning piglets.</title>
<author>
<name sortKey="Liu, Guangmang" sort="Liu, Guangmang" uniqKey="Liu G" first="Guangmang" last="Liu">Guangmang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China. liugm@sicau.edu.cn zhuomuniao278@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan</wicri:regionArea>
<wicri:noRegion>Sichuan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jie" sort="Zheng, Jie" uniqKey="Zheng J" first="Jie" last="Zheng">Jie Zheng</name>
</author>
<author>
<name sortKey="Wu, Xianjian" sort="Wu, Xianjian" uniqKey="Wu X" first="Xianjian" last="Wu">Xianjian Wu</name>
</author>
<author>
<name sortKey="Xu, Xiaomei" sort="Xu, Xiaomei" uniqKey="Xu X" first="Xiaomei" last="Xu">Xiaomei Xu</name>
</author>
<author>
<name sortKey="Jia, Gang" sort="Jia, Gang" uniqKey="Jia G" first="Gang" last="Jia">Gang Jia</name>
</author>
<author>
<name sortKey="Zhao, Hua" sort="Zhao, Hua" uniqKey="Zhao H" first="Hua" last="Zhao">Hua Zhao</name>
</author>
<author>
<name sortKey="Chen, Xiaoling" sort="Chen, Xiaoling" uniqKey="Chen X" first="Xiaoling" last="Chen">Xiaoling Chen</name>
</author>
<author>
<name sortKey="Wu, Caimei" sort="Wu, Caimei" uniqKey="Wu C" first="Caimei" last="Wu">Caimei Wu</name>
</author>
<author>
<name sortKey="Tian, Gang" sort="Tian, Gang" uniqKey="Tian G" first="Gang" last="Tian">Gang Tian</name>
</author>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31241125</idno>
<idno type="pmid">31241125</idno>
<idno type="doi">10.1039/c9fo00842j</idno>
<idno type="wicri:Area/Main/Corpus">000243</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000243</idno>
<idno type="wicri:Area/Main/Curation">000243</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000243</idno>
<idno type="wicri:Area/Main/Exploration">000243</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Putrescine enhances intestinal immune function and regulates intestinal bacteria in weaning piglets.</title>
<author>
<name sortKey="Liu, Guangmang" sort="Liu, Guangmang" uniqKey="Liu G" first="Guangmang" last="Liu">Guangmang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China. liugm@sicau.edu.cn zhuomuniao278@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan</wicri:regionArea>
<wicri:noRegion>Sichuan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jie" sort="Zheng, Jie" uniqKey="Zheng J" first="Jie" last="Zheng">Jie Zheng</name>
</author>
<author>
<name sortKey="Wu, Xianjian" sort="Wu, Xianjian" uniqKey="Wu X" first="Xianjian" last="Wu">Xianjian Wu</name>
</author>
<author>
<name sortKey="Xu, Xiaomei" sort="Xu, Xiaomei" uniqKey="Xu X" first="Xiaomei" last="Xu">Xiaomei Xu</name>
</author>
<author>
<name sortKey="Jia, Gang" sort="Jia, Gang" uniqKey="Jia G" first="Gang" last="Jia">Gang Jia</name>
</author>
<author>
<name sortKey="Zhao, Hua" sort="Zhao, Hua" uniqKey="Zhao H" first="Hua" last="Zhao">Hua Zhao</name>
</author>
<author>
<name sortKey="Chen, Xiaoling" sort="Chen, Xiaoling" uniqKey="Chen X" first="Xiaoling" last="Chen">Xiaoling Chen</name>
</author>
<author>
<name sortKey="Wu, Caimei" sort="Wu, Caimei" uniqKey="Wu C" first="Caimei" last="Wu">Caimei Wu</name>
</author>
<author>
<name sortKey="Tian, Gang" sort="Tian, Gang" uniqKey="Tian G" first="Gang" last="Tian">Gang Tian</name>
</author>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
</author>
</analytic>
<series>
<title level="j">Food & function</title>
<idno type="eISSN">2042-650X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acid Phosphatase (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Bifidobacterium (drug effects)</term>
<term>Bifidobacterium (growth & development)</term>
<term>Butyrates (metabolism)</term>
<term>Cecum (metabolism)</term>
<term>Cecum (microbiology)</term>
<term>Colon (metabolism)</term>
<term>Colon (microbiology)</term>
<term>Diarrhea (prevention & control)</term>
<term>Dietary Supplements (MeSH)</term>
<term>Escherichia coli (drug effects)</term>
<term>Escherichia coli (growth & development)</term>
<term>Fatty Acids, Volatile (metabolism)</term>
<term>Immunoglobulin M (MeSH)</term>
<term>Intestinal Mucosa (drug effects)</term>
<term>Intestinal Mucosa (immunology)</term>
<term>Intestinal Mucosa (pathology)</term>
<term>Intestines (drug effects)</term>
<term>Intestines (immunology)</term>
<term>Intestines (microbiology)</term>
<term>Janus Kinase 2 (metabolism)</term>
<term>Lactobacillus (drug effects)</term>
<term>Lactobacillus (growth & development)</term>
<term>Male (MeSH)</term>
<term>Muramidase (metabolism)</term>
<term>Putrescine (pharmacology)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sirolimus (pharmacology)</term>
<term>Swine (MeSH)</term>
<term>Weaning (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Acid phosphatase (métabolisme)</term>
<term>Acides gras volatils (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Bifidobacterium (croissance et développement)</term>
<term>Bifidobacterium (effets des médicaments et des substances chimiques)</term>
<term>Butyrates (métabolisme)</term>
<term>Caecum (microbiologie)</term>
<term>Caecum (métabolisme)</term>
<term>Compléments alimentaires (MeSH)</term>
<term>Côlon (microbiologie)</term>
<term>Côlon (métabolisme)</term>
<term>Diarrhée (prévention et contrôle)</term>
<term>Escherichia coli (croissance et développement)</term>
<term>Escherichia coli (effets des médicaments et des substances chimiques)</term>
<term>Immunoglobuline M (MeSH)</term>
<term>Intestins (effets des médicaments et des substances chimiques)</term>
<term>Intestins (immunologie)</term>
<term>Intestins (microbiologie)</term>
<term>Kinase Janus-2 (métabolisme)</term>
<term>Lactobacillus (croissance et développement)</term>
<term>Lactobacillus (effets des médicaments et des substances chimiques)</term>
<term>Lysozyme (métabolisme)</term>
<term>Muqueuse intestinale (anatomopathologie)</term>
<term>Muqueuse intestinale (effets des médicaments et des substances chimiques)</term>
<term>Muqueuse intestinale (immunologie)</term>
<term>Mâle (MeSH)</term>
<term>Putrescine (pharmacologie)</term>
<term>Sevrage (MeSH)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Suidae (MeSH)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acid Phosphatase</term>
<term>Butyrates</term>
<term>Fatty Acids, Volatile</term>
<term>Janus Kinase 2</term>
<term>Muramidase</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Muqueuse intestinale</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bifidobacterium</term>
<term>Escherichia coli</term>
<term>Lactobacillus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Bifidobacterium</term>
<term>Escherichia coli</term>
<term>Intestinal Mucosa</term>
<term>Intestines</term>
<term>Lactobacillus</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Bifidobacterium</term>
<term>Escherichia coli</term>
<term>Intestins</term>
<term>Lactobacillus</term>
<term>Muqueuse intestinale</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Bifidobacterium</term>
<term>Escherichia coli</term>
<term>Lactobacillus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Intestins</term>
<term>Muqueuse intestinale</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Intestinal Mucosa</term>
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cecum</term>
<term>Colon</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Caecum</term>
<term>Côlon</term>
<term>Intestins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Cecum</term>
<term>Colon</term>
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acid phosphatase</term>
<term>Acides gras volatils</term>
<term>Butyrates</term>
<term>Caecum</term>
<term>Côlon</term>
<term>Kinase Janus-2</term>
<term>Lysozyme</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Intestinal Mucosa</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Putrescine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Putrescine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Diarrhea</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Diarrhée</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Dietary Supplements</term>
<term>Immunoglobulin M</term>
<term>Male</term>
<term>Swine</term>
<term>Weaning</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Compléments alimentaires</term>
<term>Immunoglobuline M</term>
<term>Mâle</term>
<term>Sevrage</term>
<term>Suidae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study aimed to investigate the effect of putrescine on the immune function and intestinal bacteria of weaning piglets. Twenty-four male castrated weaning piglets on their 21st day were randomly assigned into four groups: control (basal diet) and treatment groups given basal diets supplemented with 0.05%, 0.1%, and 0.15% putrescine for 11 days. Results were as follows: (1) Dietary putrescine increased the villus height, width, height/crypt depth and surface area, and decreased the diarrhea index (P < 0.05). (2) Dietary putrescine increased the lysozyme and acid phosphatase activities and the amount of immunoglobulin M, antibacterial peptides, and transforming growth factor β1, but decreased the mRNA levels of tumor necrosis factor α, interleukin-6, interleukin-8 and inducible nitric oxide synthase (P < 0.05). (3) Dietary putrescine increased the mRNA expression of the mammalian target of rapamycin, signal transducer and activator of transcription, and Janus kinase 2 but decreased the mRNA expression of nuclear factor-kappa B P65 (P < 0.05). (4) Dietary putrescine increased the population of total bacteria, Lactobacillus, and Bifidobacterium and decreased that of Escherichia coli in the colon and cecum (P < 0.05). (5) Finally, dietary putrescine increased the concentrations of butyrate and total volatile fatty acids in the colon and those of acetate, propionate, and total volatile fatty acids in the cecum (P < 0.05). Overall, putrescine can enhance intestinal development, improve immune functions, and regulate the population of intestinal bacteria in weaning piglets.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31241125</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2042-650X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jul</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Food & function</Title>
<ISOAbbreviation>Food Funct</ISOAbbreviation>
</Journal>
<ArticleTitle>Putrescine enhances intestinal immune function and regulates intestinal bacteria in weaning piglets.</ArticleTitle>
<Pagination>
<MedlinePgn>4134-4142</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c9fo00842j</ELocationID>
<Abstract>
<AbstractText>This study aimed to investigate the effect of putrescine on the immune function and intestinal bacteria of weaning piglets. Twenty-four male castrated weaning piglets on their 21st day were randomly assigned into four groups: control (basal diet) and treatment groups given basal diets supplemented with 0.05%, 0.1%, and 0.15% putrescine for 11 days. Results were as follows: (1) Dietary putrescine increased the villus height, width, height/crypt depth and surface area, and decreased the diarrhea index (P < 0.05). (2) Dietary putrescine increased the lysozyme and acid phosphatase activities and the amount of immunoglobulin M, antibacterial peptides, and transforming growth factor β1, but decreased the mRNA levels of tumor necrosis factor α, interleukin-6, interleukin-8 and inducible nitric oxide synthase (P < 0.05). (3) Dietary putrescine increased the mRNA expression of the mammalian target of rapamycin, signal transducer and activator of transcription, and Janus kinase 2 but decreased the mRNA expression of nuclear factor-kappa B P65 (P < 0.05). (4) Dietary putrescine increased the population of total bacteria, Lactobacillus, and Bifidobacterium and decreased that of Escherichia coli in the colon and cecum (P < 0.05). (5) Finally, dietary putrescine increased the concentrations of butyrate and total volatile fatty acids in the colon and those of acetate, propionate, and total volatile fatty acids in the cecum (P < 0.05). Overall, putrescine can enhance intestinal development, improve immune functions, and regulate the population of intestinal bacteria in weaning piglets.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Guangmang</ForeName>
<Initials>G</Initials>
<Suffix></Suffix>
<AffiliationInfo>
<Affiliation>Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China. liugm@sicau.edu.cn zhuomuniao278@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<Suffix></Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Xianjian</ForeName>
<Initials>X</Initials>
<Suffix></Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xiaomei</ForeName>
<Initials>X</Initials>
<Suffix></Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
<Suffix></Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<Suffix></Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xiaoling</ForeName>
<Initials>X</Initials>
<Suffix></Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Caimei</ForeName>
<Initials>C</Initials>
<Suffix></Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
<Suffix></Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<Suffix></Suffix>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Food Funct</MedlineTA>
<NlmUniqueID>101549033</NlmUniqueID>
<ISSNLinking>2042-6496</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002087">Butyrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005232">Fatty Acids, Volatile</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007075">Immunoglobulin M</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.2</RegistryNumber>
<NameOfSubstance UI="D053614">Janus Kinase 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.2</RegistryNumber>
<NameOfSubstance UI="D000135">Acid Phosphatase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.17</RegistryNumber>
<NameOfSubstance UI="D009113">Muramidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V10TVZ52E4</RegistryNumber>
<NameOfSubstance UI="D011700">Putrescine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000135" MajorTopicYN="N">Acid Phosphatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001644" MajorTopicYN="N">Bifidobacterium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002087" MajorTopicYN="N">Butyrates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002432" MajorTopicYN="N">Cecum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003106" MajorTopicYN="N">Colon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003967" MajorTopicYN="N">Diarrhea</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019587" MajorTopicYN="Y">Dietary Supplements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005232" MajorTopicYN="N">Fatty Acids, Volatile</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007075" MajorTopicYN="N">Immunoglobulin M</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007413" MajorTopicYN="N">Intestinal Mucosa</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053614" MajorTopicYN="N">Janus Kinase 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007778" MajorTopicYN="N">Lactobacillus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009113" MajorTopicYN="N">Muramidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011700" MajorTopicYN="N">Putrescine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014886" MajorTopicYN="Y">Weaning</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31241125</ArticleId>
<ArticleId IdType="doi">10.1039/c9fo00842j</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Xiaoling" sort="Chen, Xiaoling" uniqKey="Chen X" first="Xiaoling" last="Chen">Xiaoling Chen</name>
<name sortKey="Jia, Gang" sort="Jia, Gang" uniqKey="Jia G" first="Gang" last="Jia">Gang Jia</name>
<name sortKey="Tian, Gang" sort="Tian, Gang" uniqKey="Tian G" first="Gang" last="Tian">Gang Tian</name>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<name sortKey="Wu, Caimei" sort="Wu, Caimei" uniqKey="Wu C" first="Caimei" last="Wu">Caimei Wu</name>
<name sortKey="Wu, Xianjian" sort="Wu, Xianjian" uniqKey="Wu X" first="Xianjian" last="Wu">Xianjian Wu</name>
<name sortKey="Xu, Xiaomei" sort="Xu, Xiaomei" uniqKey="Xu X" first="Xiaomei" last="Xu">Xiaomei Xu</name>
<name sortKey="Zhao, Hua" sort="Zhao, Hua" uniqKey="Zhao H" first="Hua" last="Zhao">Hua Zhao</name>
<name sortKey="Zheng, Jie" sort="Zheng, Jie" uniqKey="Zheng J" first="Jie" last="Zheng">Jie Zheng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Guangmang" sort="Liu, Guangmang" uniqKey="Liu G" first="Guangmang" last="Liu">Guangmang Liu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000256 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000256 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31241125
   |texte=   Putrescine enhances intestinal immune function and regulates intestinal bacteria in weaning piglets.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31241125" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020